Channelpedia

PubMed 10545354


Referenced in: none

Automatically associated channels: Kv11.1



Title: Enhancement of HERG K+ currents by Cd2+ destabilization of the inactivated state.

Authors: J P Johnson, J R Balser, P B Bennett

Journal, date & volume: Biophys. J., 1999 Nov , 77, 2534-41

PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/10545354


Abstract
We have studied the functional effects of extracellular Cd(2+) on human ether-a-go-go-related gene (HERG) encoded K(+) channels. Low concentrations (10-200 microM) of extracellular Cd(2+) increased outward currents through HERG channels; 200 microM Cd(2+) more than doubled HERG currents and altered current kinetics. Cd(2+) concentrations up to 200 microM did not change the voltage dependence of channel activation, but shifted the voltage dependence of inactivation to more depolarized membrane potentials. Cd(2+) concentrations >or=500 microM shifted the voltage dependence of channel activation to more positive potentials. These results are consistent with a somewhat specific ability of Cd(2+) to destabilize the inactivated state. We tested the hypothesis that channel inactivation is essential for Cd(2+)-induced increases in HERG K(+) currents, using a double point mutation (G628C/S631C) that diminishes HERG inactivation (Smith, P. L., T. Baukrowitz, and G. Yellen. 1996. Nature (Lond.). 379:833-836). This inactivation-removed mutant is insensitive to low concentrations of Cd(2+). Thus, Cd(2+) had two distinct effects on HERG K(+) channels. Low concentrations of Cd(2+) caused relatively selective effects on inactivation, resulting in a reduction of the apparent rectification of the channel and thereby increasing HERG K(+) currents. Higher Cd(2+) concentrations affected activation gating as well, possibly by a surface charge screening mechanism or by association with a lower affinity site.