Channelpedia

PubMed 22334483


Referenced in: none

Automatically associated channels: Kv11.1 , Slo1



Title: Slow delayed rectifying potassium current (I(Ks) ) - analysis of the in vitro inhibition data and predictive model development.

Authors: Sebastian Polak, Barbara Wiśniowska, Anna Glinka, Kamil Fijorek, Aleksander Mendyk

Journal, date & volume: , 2012 Feb 14 , ,

PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/22334483


Abstract
The excitable cell membranes contain ion channels that allow the ions passage through the specific pores via a passive process. Assessment of the inhibition of the IKr (hERG) current is considered to be the main target during the drug development process, although there are other ionic currents for which drug-triggered modification can either potentiate or mask hERG channel blockade. Information describing the results of in vitro studies investigating the chemical-IKs current interactions has been developed in the current study. Based on the publicly available data sources, 145 records were collected. The final list of publications consists of 64 positions and refers to 106 different molecules connected with IKs current inhibition, with at least one IC50 value measured. Ultimately, 98 of the IC50 values expressed as absolute values were gathered. For 36 records the IC50 was expressed as a relative value. For the 11 remaining records, the inhibition was not clearly expressed. Based on the collected data the predictive models for the IC50 estimation were developed with the use of various algorithms. The extended Quantitative Structure-Activity Relationships (QSAR) methodology was applied and the in vitro research settings were included as independent variables, apart from the physico-chemical descriptors calculated with the use of the Marvin Calculator Plugins. The root mean squared error and normalized root mean squared error values for the best model (an expert system based on two independent artificial neural networks) were 0.86 and 14.04%, respectively. The model was further built into the ToxComp system, the ToxIVIVE tool specialized for cardiotoxicity assessment of drugs.