Channelpedia

PubMed 14973143


Referenced in: none

Automatically associated channels: Kv11.1



Title: Impairment of HERG K(+) channel function by tumor necrosis factor-alpha: role of reactive oxygen species as a mediator.

Authors: Jingxiong Wang, Huizhen Wang, Yiqiang Zhang, Huanhuan Gao, Stanley Nattel, Zhiguo Wang

Journal, date & volume: J. Biol. Chem., 2004 Apr 2 , 279, 13289-92

PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/14973143


Abstract
Congestive heart failure (CHF) is associated with susceptibility to lethal arrhythmias and typically increases levels of tumor necrosis factor-alpha (TNF-alpha) and its receptor, TNFR1. CHF down-regulates rapid delayed-rectifier K(+) current (I(Kr)) and delays cardiac repolarization. We studied the effects of TNF-alpha on cloned HERG K(+) channel (human ether-a-go-go-related gene) in HEK293 cells and native I(Kr) in canine cardiomyocytes with whole-cell patch clamp techniques. TNF-alpha consistently and reversibly decreased HERG current (I(HERG)). Effects of TNF-alpha were concentration-dependent, increased with longer incubation period, and occurred at clinically relevant concentrations. TNF-alpha had similar inhibitory effects on I(Kr) and markedly prolonged action potential duration (APD) in canine cardiomyocytes. Immunoblotting analysis demonstrated that HERG protein level was slightly higher in canine hearts with tachypacing-induced CHF than in healthy hearts, and TNF-alpha slightly increased HERG protein level in CHF but not in healthy hearts. In cells pretreated with the inhibitory anti-TNFR1 antibody, TNF-alpha lost its ability to suppress I(HERG), indicating a requirement of TNFR1 activation for HERG suppression. Vitamin E or MnTBAP (Mn(III) tetrakis(4-benzoic acid) porphyrin chloride), a superoxide dismutase mimic) prevented, whereas the superoxide anion generating system xanthine/xanthine oxidase mimicked, TNF-alpha-induced I(HERG) depression. TNF-alpha caused robust increases in intracellular reactive oxygen species, and vitamin E and MnTBAP abolished the increases, in both HEK293 cells and canine ventricular myocytes. We conclude that the TNF-alpha/TNFR1 system impairs HERG/I(Kr) function mainly by stimulating reactive oxygen species, particularly superoxide anion, but not by altering HERG expression; the effect may contribute to APD prolongation by TNF-alpha and may be a novel mechanism for electrophysiological abnormalities and sudden death in CHF.