Channelpedia

PubMed 20682849


Referenced in: none

Automatically associated channels: Cav3.1 , Cav3.3 , Slo1



Title: In vitro characterization of T-type calcium channel antagonist TTA-A2 and in vivo effects on arousal in mice.

Authors: Richard L Kraus, Yuxing Li, Yun Gregan, Anthony L Gotter, Victor N Uebele, Steven V Fox, Scott M Doran, James C Barrow, Zhi-Qiang Yang, Thomas S Reger, Kenneth S Koblan, John J Renger

Journal, date & volume: J. Pharmacol. Exp. Ther., 2010 Nov , 335, 409-17

PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/20682849


Abstract
T-type calcium channels have been implicated in many behaviorally important neurophysiological processes, and altered channel activity has been linked to the pathophysiology of neurological disorders such as insomnia, epilepsy, Parkinson's disease, depression, schizophrenia, and pain. We have previously identified a number of potent and selective T-type channel antagonists (Barrow et al., 2007; Shipe et al., 2008; Yang et al., 2008). Here we describe the properties of the antagonist TTA-A2 [2-(4-cyclopropylphenyl)-N-((1R)-1-{5-[(2,2,2-trifluoroethyl)oxo]-pyridin-2-yl}ethyl)acetamide], assessed in patch-clamp experiments. TTA-A2 blocks T-type channels (Ca(v)3.1, 3.2, 3.3) voltage dependently and with high potency (IC(50) ∼100 nM). Stimulation at 3 Hz revealed additional use dependence of inhibition. A hyperpolarized shift of the channel availability curve and delayed channel recovery from inactivation suggest that the compound preferentially interacts with and stabilizes inactivated channels. The compound showed a ∼300-fold selectivity for Ca(v)3 channels over high-voltage activated calcium channels. Inhibitory effects on native T-type currents were confirmed in brain slice recordings from the dorsal lateral geniculate nucleus and the subthalamic nucleus. Furthermore, we demonstrate that in vivo T-type channel inhibition by TTA-A2 suppresses active wake and promotes slow-wave sleep in wild-type mice but not in mice lacking both Ca(v)3.1 and Ca(v)3.3, suggesting the selective effect of TTA-A2 on recurrent thalamocortical network activity. The discovery of the potent and selective T-type channel antagonist TTA-A2 has enabled us to study the in vivo effects of pharmacological T-channel inhibition on arousal in mice, and it will help to explore the validity of these channels as potential drug targets for sleep-related and other neurological diseases.