Channelpedia

PubMed 17939752


Referenced in: none

Automatically associated channels: Kv7.1 , Slo1



Title: Application of PatchXpress planar patch clamp technology to the screening of new drug candidates for cardiac KCNQ1/KCNE1 (I Ks) activity.

Authors: Elena S Trepakova, Manish G Malik, John P Imredy, Jacob R Penniman, Spencer J Dech, Joseph J Salata

Journal, date & volume: , 2007 Oct , 5, 617-27

PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/17939752


Abstract
A cardiac safety concern for QT prolongation and potential for pro-arrhythmia exists due to inhibition of the cardiac slowly activating delayed rectifier potassium current, I(Ks). Selective inhibitors of I Ks have been shown to prolong the QT interval in animal models. On the other hand, I Ks has been considered as a target for anti-arrhythmic therapy due to certain biophysical and pharmacological properties and its expression pattern in the heart. Consequently, we have developed a method utilizing a human embryonic kidney (HEK)-293 cell line expressing KCNQ1/KCNE1 (genes that encode for the I Ks channel) as a model for screening of new compounds for I Ks activity. This study was designed (1) to establish and optimize the experimental conditions for measurement of I Ks using PatchXpress() 7000A (Molecular Devices Corporation, Sunnyvale, CA) and (2) to test the effects of I Ks inhibitors and compare the 50% inhibitory concentration (IC50) values determined with PatchXpress versus conventional patch clamp in order to validate the PatchXpress approach for higher-throughput I Ks screening. Biophysical properties of HEK/I Ks recorded with PatchXpress were similar to those recorded with conventional patch-clamp and reported in the literature. The IC50 values for I Ks block determined with PatchXpress correlated well with conventional patch-clamp values from HEK-293 cells as well as from native cardiac myocytes for the majority of compounds tested. Electrophysiological recording of I Ks expressed in HEK-293 cells with the PatchXpress is of acceptable quality for screening purposes. This approach can be utilized for functional prescreening of development compounds for I Ks inhibition either for optimizing lead anti-arrhythmic or other therapeutic candidates or to exclude compounds with the potential to prolong QT.