Channelpedia

PubMed 17618452


Referenced in: none

Automatically associated channels: Kv7.1



Title: Role of the serum and glucocorticoid inducible kinase SGK1 in glucocorticoid stimulation of gastric acid secretion.

Authors: Ciprian Sandu, Ferruh Artunc, Florian Grahammer, Anand Rotte, Krishna M Boini, Björn Friedrich, Diana Sandulache, Marco Metzger, Lothar Just, Andreas Mack, Thomas Skutella, Rexhep Rexhepaj, Teut Risler, Peer Wulff, Dietmar Kuhl, Florian Lang

Journal, date & volume: Pflugers Arch., 2007 Dec , 455, 493-503

PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/17618452


Abstract
Glucocorticoids stimulate gastric acid secretion, an effect favoring the development of peptic ulcers. Putative mechanisms involved include the serum- and glucocorticoid-inducible kinase (SGK1), which stimulates a variety of epithelial channels and transporters. The present study explored the contribution of SGK1 to effects of glucocorticoids on gastric acid secretion. In isolated gastric glands from gene-targeted mice lacking functional SGK1 (sgk1 (-/-)) and their wild-type littermates (sgk1 (+/+)), H(+)-secretion (DeltapH/min) was determined utilizing 2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein (BCECF)-fluorescence, SGK1 transcript levels by in situ hybdridization, and expression of KCNQ1 channels by immunohistochemistry and real-time polymerase chain reaction. SGK1 transcript levels were enhanced by a 4-day treatment with 10 mug/g body weight (BW)/day dexamethasone (DEX). Before treatment, DeltapH/min was similar in sgk1 (-/-) and sgk1 (+/+)mice. DEX increased DeltapH/min approximately fourfold in sgk1 (+/+)mice and approximately twofold in sgk1 (-/-)mice, effects abolished in the presence of K(+)/H(+)ATPase-inhibitor omeprazole (50 microM). Increase in local K(+) concentrations to 35 mM (replacing Na(+)) enhanced DeltapH/min, which could not be further stimulated by DEX and was not significantly different between sgk1 (-/-) and sgk1 (+/+)mice. Carbachol (100 microM) and forskolin (5 microM) stimulated gastric acid secretion to a similar extent in sgk1 (-/-) and sgk1 (+/+)mice. In conclusion, SGK1 is not required for basal and cyclic AMP-stimulated gastric H(+) secretion but participates in the stimulation of gastric H(+) secretion by glucocorticoids. The effects of glucocorticoids and SGK1 are not additive to an increase in extracellular K(+) concentration and may thus involve stimulation of K(+) channels.