Channelpedia

PubMed 15805167


Referenced in: none

Automatically associated channels: Nav1.5 , Slo1



Title: Tryptophan substitution of a putative D4S6 gating hinge alters slow inactivation in cardiac sodium channels.

Authors: Sho-Ya Wang, Corinna Russell, Ging Kuo Wang

Journal, date & volume: Biophys. J., 2005 Jun , 88, 3991-9

PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/15805167


Abstract
Voltage-gated Na(+) channels display rapid activation gating (opening) as well as fast and slow inactivation gating (closing) during depolarization. We substituted residue S1759 (serine), a putative D4S6 gating hinge of human cardiac hNav1.5 Na(+) channels with A (alanine), D (aspartate), K (lysine), L (leucine), P (proline), and W (tryptophan). Significant shifts in gating parameters for activation and steady-state fast inactivation were observed in A-, D-, K-, and W-substituted mutant Na(+) channels. No gating shifts occurred in the L-substituted mutant, whereas the P-substituted mutant did not yield sufficient Na(+) currents. Wild-type, A-, D-, and L-substituted mutant Na(+) channels showed little or no slow inactivation with a 10-s conditioning pulse ranging from -180 to 0 mV. Unexpectedly, W- and K-substituted mutant Na(+) channels displayed profound maximal slow inactivation around -100 mV ( approximately 85% and approximately 70%, respectively). However, slow inactivation was progressively reversed in magnitude from -70 to 0 mV. This regression was minimized in inactivation-deficient hNav1.5-S1759W/L409C/A410W Na(+) channels, indicating that the intracellular fast-inactivation gate caused such a reversal. Our data suggest that the hNav1.5-S1759 residue plays a critical role in slow inactivation. Possible mechanisms for S1759 involvement in slow inactivation and for antagonism between fast and slow inactivation are discussed.