Channelpedia

PubMed 16109783


Referenced in: none

Automatically associated channels: Kv2.1



Title: Electrophysiological characterization of pancreatic islet cells in the mouse insulin promoter-green fluorescent protein mouse.

Authors: Yuk M Leung, Ishtiaq Ahmed, Laura Sheu, Robert G Tsushima, Nicholas E Diamant, Manami Hara, Herbert Y Gaisano

Journal, date & volume: Endocrinology, 2005 Nov , 146, 4766-75

PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/16109783


Abstract
We recently reported a transgenic [mouse insulin promoter (MIP)-green fluorescent protein (GFP)] mouse in which GFP expression is targeted to the pancreatic islet beta-cells to enable convenient identification of beta-cells as green cells. The GFP-expressing beta-cells of the MIP-GFP mouse were functionally indistinguishable from beta-cells of normal mice. Here we characterized the ionic channel properties and exocytosis of MIP-GFP mouse islet beta- and alpha-cells. Beta-cells displayed delayed rectifying K+ and high-voltage-activated Ca2+ channels and exhibited Na+ currents only at hyperpolarized holding potential. Alpha-cells were nongreen and had both A-type and delayed rectifier K+ channels, both low-voltage-activated and high-voltage-activated Ca2+ channels, and displayed Na+ currents readily at -70 mV holding potential. Alpha-cells had ATP-sensitive K+ channel (KATP) channel density as high as that in beta-cells, and, surprisingly, alpha-cell KATP channels were more sensitive to ATP inhibition (IC50=0.16+/-0.03 mM) than beta-cell KATP channels (IC50=0.86+/-0.10 mM). Whereas alpha-cells were rather uniform in size [2-4.5 picofarad (pF)], beta-cells varied vastly in size (2-12 pF). Of note, small beta-cells (<4.5 pF) showed little exocytosis, whereas medium beta-cells (5-8 pF) exhibited vigorous exocytosis, but large beta-cells (>8 pF) had weaker exocytosis. We found no correlation between beta-cell size and their Ca2+ channel density, suggesting that Ca2+ influx may not be the cause of the heterogeneity in exocytotic responses. The MIP-GFP mouse therefore offers potential to further explore the functional heterogeneity in beta-cells of different sizes. The MIP-GFP mouse islet is therefore a reliable model to efficiently examine alpha-cell and beta-cell physiology and should greatly facilitate examination of their pathophysiology when the MIP-GFP mice are crossed with diabetic models.