Channelpedia

PubMed 11278781


Referenced in: none

Automatically associated channels: Kv11.1 , Kv7.1



Title: Analysis of the cyclic nucleotide binding domain of the HERG potassium channel and interactions with KCNE2.

Authors: J Cui, A Kagan, D Qin, J Mathew, Y F Melman, T V McDonald

Journal, date & volume: J. Biol. Chem., 2001 May 18 , 276, 17244-51

PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/11278781


Abstract
Mutations in the cyclic nucleotide binding domain (CNBD) of the human ether-a-go-go-related gene (HERG) K+ channel are associated with LQT2, a form of hereditary Long QT syndrome (LQTS). Elevation of cAMP can modulate HERG K+ channels both by direct binding and indirect regulation through protein kinase A. To assess the physiological significance of cAMP binding to HERG, we introduced mutations to disrupt the cyclic nucleotide binding domain. Eight mutants including two naturally occurring LQT2 mutants V822M and R823W were constructed. Relative cAMP binding capacity was reduced or absent in CNBD mutants. Mutant homotetramers carry little or no K+ current despite normal protein abundance and surface expression. Co-expression of mutant and wild-type HERG resulted in currents with altered voltage dependence but without dominant current suppression. The data from co-expression of V822M and wild-type HERG best fit a model where one normal subunit within a tetramer allows nearly normal current expression. The presence of KCNE2, an accessory protein that associates with HERG, however, conferred a partially dominant current suppression by CNBD mutants. Thus KCNE2 plays a pivotal role in determining the phenotypic severity of some forms of LQT2, which suggests that the CNBD of HERG may be involved in its interaction with KCNE2.